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Abstract. In this paper we study the energy of ULF electro-
magnetic waves that were recorded by the satellite DEME-
TER, during its passing over Haiti before and after a destruc-
tive earthquake. This earthquake occurred on 12 January
2010, at geographic Latitude 18.46◦ and Longitude 287.47◦,
with Magnitude 7.0 R. Specifically, we are focusing on the
variations of energy of Ez-electric field component concern-
ing a time period of 100 days before and 50 days after the
strong earthquake. In order to study these variations, we
have developed a novel method that can be divided in two
stages: first we filter the signal, keeping only the ultra low
frequencies and afterwards we eliminate its trend using tech-
niques of Singular Spectrum Analysis (SSA), combined with
a third-degree polynomial filter. As it is shown, a significant
increase in energy is observed for the time interval of 30 days
before the earthquake. This result clearly indicates that the
change in the energy of ULF electromagnetic waves could be
related to strong precursory earthquake phenomena. More-
over, changes in energy associated with strong aftershock
activity were also observed 25 days after the earthquake. Fi-
nally, we present results concerning the comparison between
changes in energy during night and day passes of the satellite
over Haiti, which showed differences in the mean energy val-
ues, but similar results as far as the rate of the energy change
is concerned.

1 Introduction

Earthquakes (EQs) are complex phenomena generated by
rock deformation in the brittle outer part of the Earth and
are associated with large unpredictability, due to inherent
extreme randomness (Kagan, 2007). However, in the last
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decades there is growing evidence that EQs precursory phe-
nomena exist and can be detected. This evidence is based
on studies of certain effects related to magnetic and telluric
fields, ionospheric perturbations, nightglow observations and
generation of electromagnetic (EM) emissions from DC to
high frequency (HF) range and radiation belt precipitation in
the upper ionosphere (Bhattacharya et al., 2007; Anagnos-
topoulos et al., 2010; Sidiropoulos et al., 2010). Theoretical
studies and laboratory experiments suggest two main mech-
anisms for the production of precursor earthquake waves,
namely the electromechanical mechanism and the acoustic
mechanism. These mechanisms are mainly based on the de-
formation of rocks under pressure and temperature condi-
tions existing in the brittle seismogenic crust which desta-
bilise the mechanical and electrical properties of the solids.
In particular, according to the electromechanical mechanism,
electric charges are generated as the result of friction and
piezoelectric phenomenon that change the Earth’s electric
field and generates EM waves, which are considered to prop-
agate to the upper atmosphere and ionosphere (Lokner et al.,
1983; Cress et al., 1987; Enomoto and Hashimoto, 1990; Par-
rot et al., 1993). On the other hand, according to the acous-
tic mechanism, gravity waves are generated before and after
the earthquake. These waves propagate in the atmosphere
where their amplitudes are increased relatively to height, due
to the air’s density decrease, disturb the ionosphere and cause
VLF emissions of electromagnetic waves (Davies and Baker,
1965; Gokhberg et al., 1982; Ralchovski et al., 1985).

Most papers have been devoted to studies of ELF/VLF
waves (Gokhberg et al., 1983; Larkina et al., 1983, 1989;
Parrot and Lefeuvre, 1985; Parrot and Mogilevsky, 1989;
Chmyrev et al., 1989; Serebryakova et al., 1992; Henderson
et al., 1993; Zhang et al., 2009; Akhoondzadeh et al., 2010)
and the analyses have been made mainly in the frequency
domain (Fourier analysis), due to the large amount of data.
However, Fourier analysis cannot capture some essential
characteristics which are revealed in time domain analysis.
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Fig. 1. The waveform of Ez electric field component (left) concerning the DEMETER’s orbit 295501 (right) on 9 January 2010 for the time
interval 01:53:30 – 02:26:00 UT. Moreover, on the x-axis of left image the values of Latitude, Longitude, L-value and Altitude of DEMETER
are depicted.

Moreover, there is growing evidence that the ionosphere is
a strong nonlinear complex turbulent system (Blecki et al.,
2010a, b; Unnikrishnan, 2010 and references therein). Thus,
traditional Fourier analysis is not capable for analyzing sig-
nals related to significant nonlinear phenomena such as tur-
bulence. The Fourier transform spreads information about
localized features over all the scales making it impossible to
study the evolution of different scale structures simultane-
ously. Nevertheless, recent studies with applications of the
wavelet analysis and higher order spectra concerning elec-
tromagnetic disturbances over epicenter regions have been
published (Blecki et al., 2010a, b), showing the presence of
strong emissions in the ELF frequency domain in the Iono-
sphere 6 to 2 days or even 1 day before the earthquakes.

Here, we attempt a different investigation using ULF satel-
lite EM signals observed in the upper ionosphere. Our
methodology has the following advantages: (1) time domain
analysis of EM ULF signals detected by a satellite in the
upper ionosphere is a new tool in the related literature, (2)
ELF/VLF waves compared to ULF waves weaken faster in
the ionosphere, so a ULF study by a satellite in the upper
ionosphere may have direct access to the EQ preparation
zone, and therefore, may give more clear results concern-
ing EQ preparation processes (Chmyrev et al., 1989), (3)
There are, in general, a limited number of studies on the
possible relation of ULF EM waves in the upper ionosphere
with earthquakes (Fraser-Smith et al., 1990; Molchanov et
al., 1992) (4) Even in studies concerning ELF/VLF emis-

sions (for example Henderson et al., 1993; Parrot, 1994), it
was shown that significant EM emissions were also observed
in ultra-low frequencies, namely 4–8 Hz and 4–16 Hz. (5)
The amount of ULF data (much less than the corresponding
ELF/VLF data) is suitable for analysis in the time domain as
well as for the application of Singular Spectrum Analysis (6)
Finally, significant emissions have been found in the range of
∼50 Hz (Blecki et al., 2010b), which are close to the range
of the ULF scale (0–20 Hz). For these reasons, we chose to
focus on space-based ULF EM emissions to study their en-
ergy changes during a long period before and after a strong
EQ. Our study was based on the analysis of measurements
from the DEMETER satellite around the deadly earthquake
of Haiti on 12 January 2010.

2 Data analysis and results

For the estimation of ULF signals we used data derived from
the DEMETER satellite database. Generally, the microsatel-
lite DEMETER was launched on 29 June 2004, its orbit al-
titude was approximately 660 km and it took 14 orbits per
day around the Earth. Among the Scientific Objectives of
the DEMETER mission is the investigation of the Earth’s
Ionosphere and disturbances due to seismic and volcanic ac-
tivities. The ICE instrument allows the measurements of the
three components of the electromagnetic wave field from DC
up to 3.5 MHz (Berthelier et al., 2006).
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Figure 2.  Comparison of two different waveforms of Ez electric field component, one 

(Fig. 2a) corresponding to the waveform presented to Fig.1 and the other (Fig. 2b) 

corresponding to a time period where no earthquake occurred in the broad seismic 

region of Haiti. 

 

 

Fig. 2. Comparison of two different waveforms of the Ez electric
field component, one (Fig. 2a) corresponding to the waveform pre-
sented in Fig. 1 and the other (Fig. 2b) corresponding to a time
period where no earthquake occurred in the broad seismic region of
Haiti.

In this paragraph, we present results concerning the anal-
ysis of the z-component of electric field of the ULF waves,
within the frequency range of 0–20 Hz. It should be noted
that the analysis of the other components Ex, Ey, gives sim-
ilar results (not shown in this paper). In particular, the data
cover a time period of 150 days, 100 before and 50 after the
earthquake, corresponding to 374 semi-orbits of the DEME-
TER satellite. These semi-orbits were carefully selected in
order to be strongly related to the area where the earthquake
took place. 207 of them correspond to night-passing (Up
Orbits) over Haiti, while the rest correspond to day-passing
(Down Orbits). The sampling frequency of data is 40 Hz, and
the number of data per orbit is about 82 000.

Figure 1 shows the waveform of the electric field com-
ponent Ez (left image) concerning the orbit 295501 (right
image) on 9 January 2010 for the time interval 01:53:30
– 02:26:00 UT. Moreover, on the x-axis of the left image
the values of Latitude, Longitude, L-value and Altitude of
DEMETER are depicted. As it is shown within the red
dashed line of Fig. 2a, there exists a significant fluctuation in
the waveform, as the satellite passes over Haiti, in 02:16:00
– 02:23:00 UT and at 10◦–30◦ Latitude.

Moreover, in Fig. 2 we present a comparison of two dif-
ferent waveforms of the Ez electric field component, one
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Figure 3. a) The perturbed waveform (shown in Fig. 2a) focused on time period  

between 49000-62000 (x 0.025 sec). b) The filtered focused perturbed signal (Fig. 

3a). For filtering we used Singular Spectrum Analysis, combined with a third-degree 

polynomial filter.  c) Τhe square power of pre-Earthquake signal shown in Fig. 3b. 

 

 

Fig. 3. (a)The perturbed waveform (shown in Fig. 2a) focussed on
a time period between 49 000–62 000 (x 0.025 s).(b) The filtered,
focused, perturbed signal (Fig. 3a). For filtering we used Singular
Spectrum Analysis, combined with a third-degree polynomial filter.
(c) The square power of the pre-Earthquake signal shown in Fig. 3b.

(Fig. 2a) corresponding to the waveform presented in Fig. 1
and the other (Fig. 2b), corresponding to a time period where
no earthquake occurred in the broad seismic region of Haiti.
From the observation of Fig. 2b, it is clear that there is no
significant variation in the waveform corresponding to the
period of seismic quiescence.

In order to estimate the energy of the possible pre-
Earthquake signal, we focussed on the signal shown in
Fig. 3a, which corresponds to the perturbed waveform
(Fig. 2a). On this signal a low pass frequency filter was ap-
plied, keeping frequencies lower than 5 Hz, in order to esti-
mate thoroughly the mean energy value. Consecutively, we
used the methods of Singular Spectrum Analysis (Athana-
siu and Pavlos, 2001) and polynomial fitting of third order
in order to remove the signal trend that corresponds to ex-
ogenous factors. A brief description of Singular Spectrum
Analysis is given in Appendix A. The resulting signal ap-
pears in the Fig. 3b. We consider that this waveform is the
clear pre-Earthquake signal recorded by DEMETER satel-
lite. The plot presented in Fig. 3c is the square power of the
pre-Earthquake signal and consists of an estimation of its en-
ergy. In this case the mean value of energy was found to be
0.37 (mV m)−2.

Figure 4a shows the mean value of energy for signals
within the frequency range of 0–20 Hz, corresponding to the
data of 135 perturbed and unperturbed semi-orbits which
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Figure 4. a) The mean value of energy for signals corresponding to data which were 

recorded by DEMETER satellite during its night-passing covering a time interval of 

100 days before the strong Earthquake. As we can see in this Figure many significant 

increases in the mean value of the energy are observed in a time period of one month 

before the main Earthquake. b) The mean value of energy of pre-earthquake signals 

per 25. The most significant change of energy is observed for the time interval 0-25 

days before the earthquake.  

 

 

 

 

 

 

 

Fig. 4. (a)The mean value of energy for signals corresponding to
data recorded by the DEMETER satellite during its night-passing
covering a time interval of 100 days before the strong Earthquake.
As we can see in this figure, many significant increases in the mean
value of the energy are observed in a time period of one month
before the main Earthquake.(b) The mean value of energy of pre-
earthquake signals per 25. The most significant change of energy is
observed for the time interval 0–25 days before the earthquake.

cover a time interval of 100 days before the strong Earth-
quake, using the same procedure described previously in
Fig. 3. These orbits were recorded by the DEMETER satel-
lite during its night-passing (Up Orbits) over Haiti for the
geographic Latitude 18.46± 10◦ (8◦–28

◦

) degrees and Lon-
gitude 287.47±15◦ (272◦–302◦) degrees. This part of Earth
can be considered as the seismic region around Haiti. Also in
this seismic region and for this time interval, no earthquake
with a magnitude greater than 5 took place. Thus, we assume
that the observed signals can be related to precursor phenom-
ena of the strong earthquake occurring 100 days later. As
we can see in this figure, many significant increases in the
mean value of the energy are observed in a time period of
one month before the main Earthquake, while the first strong
signal is detected 33 days before the event.

Figure 4b shows the estimation of the mean value of en-
ergy of pre-earthquake signals per 25 days. We observe that
for the time interval 50–100 days before the main event, the
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Figure 5. a) Figure 5a is similar to Figure 4a, but in this case we have rejected the 

values which are smaller than 0.l (mV/m)
2
.  As it is observed most of the values of 

energy are concentrated in the time interval of one month before of the earthquake. b) 

Figure 5b is similar to Figure 4b, but in this case we have replaced the values of 

energy that are greater than 0.1 (mV/m)
2
 with zero. As it is shown in this figure the 

most significant change of energy is observed for the time interval of 0 -25 days 

before the earthquake. 

 

 

 

 

 

 

 

Fig. 5. (a)Figure 5a is similar to Fig. 4a, but in this case we have
rejected values smaller than 0.l (mV m)−2. As observed, most of
the values of energy are concentrated in the time interval of one
month before the earthquake.(b) Figure 5b is similar to Fig. 4b,
but in this case we have replaced the values of energy greater than
0.1 (mV m)−2 with zero. As it is shown in this figure, the most
significant change of energy is observed for the time interval of 0–
25 days before the earthquake.

mean value of energy takes low values around 0.1 (mV m)−2.
The first significant change of energy is observed for the time
interval of 25–50 days before the earthquake, where the mean
value of energy is 0.13 (mV m)−2, corresponding to an in-
crease of 40%. Finally, the most significant change of energy
is observed for the time interval 0–25 days before the earth-
quake, where the mean value of energy attains values around
0.21 (mV m)−2, corresponding to an increase of 220%.

Figure 5a is similar to Fig. 4a, but in this case we have
rejected the values smaller than a threshold of 0.l (mV m)−2,
which corresponds to the mean value of energy for the time
interval 50–100 days before the earthquake, in order to fur-
ther highlight the increases in the mean energy. As observed,
most of the values of energy are concentrated in the time in-
terval of one month before the earthquake. On the contrary,
as far as the time interval 50–100 days before the earthquake
is concerned, few and low-energy pre-earthquake signals are
observed.
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Figure 6. Results of the mean value of energy per 25 days for the pre-earthquake 

signals that are recorded by the DEMETER satellite during night (Fig. 6a) and day 

passing (Fig. 6b) over Haiti. In both figures, the energy of the pre-earthquake signals 

increases at the same rate regarding the time before the earthquake.  

 

 

 

 

 

 

 

 

 

Fig. 6. Results of the mean value of energy per 25 days for the
pre-earthquake signals recorded by the DEMETER satellite during
night (a) and day passing(b) over Haiti. In both figures, the energy
of the pre-earthquake signals increases at the same rate regarding
the same time period before the earthquake.

Figure 5b is similar to Fig. 4b, but in this case, in or-
der to estimate the mean value of energy per 25 days, we
have replaced the values of energy that are greater than
0.1 (mV m)−2 with zero, as is explained in the previous sec-
tion. As it is shown in this figure, the mean value of energy
obtains low values around 0.05 (mV m)−2 for the time inter-
val of 50–100 days before the earthquake. The first signifi-
cant change of energy is observed for the time interval 25–50
days before the main event, where the mean value of energy
is 0.1 (mV m)−2, an increase of 100%. Finally, the most sig-
nificant change of energy is observed for the time interval
of 0–25 days before the earthquake, where the mean value
of energy is 0.18 (mV m)−2, corresponding to an increase of
360%.

Figure 6 presents results of the mean value of energy
per 25 days for the pre-earthquake signals recorded by the
DEMETER satellite during night (Fig. 6a) and day passing
(Fig. 6b) over Haiti. Figure 6a is the same as Fig. 4b and
has already been described. Figure 6b shows the mean value
of energy for the signals recorded by DEMETER satellite
during its day passing (Down Orbits) over Haiti for Latitude
18.46± 5◦ (13◦–23◦) degrees and Longitude 287.47± 15◦

(272◦–302◦) degrees. The data correspond to 131 semi-
orbits covering a time interval of 100 days before the Earth-
quake.
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Figure 7. a) The average energy of the pre-earthquake signals recorded by the satellite 

during night-passing, for 100 days before the main earthquake as well as for the 

aftershock signals for 50 days. b) The average energy per 25 days of the observed 

signal during the night, for 100 days before and 50 days after the earthquake.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (a) The average energy of the pre-earthquake signals
recorded by the satellite during night-passing for 100 days before
the main earthquake as well as for the aftershock signals for 50 days.
(b) The average energy per 25 days of the observed signal during
the night, for 100 days before and 50 days after the earthquake.

The comparison of Fig. 6a, b shows that the energy per-
turbation of pre-seismic day-passing signals is much smaller
than night-passing ones. As it was found for the time in-
terval of 100 days before the earthquake, the mean value of
energy during the day-passing was 0.005 (mV m)−2 while
for the night-passing it was 0.13 (mV m)−2, namely 26 times
greater. We think that this difference could be due to the
strong ionization of the Ionosphere during daytime causing
great attenuation in the pre-seismic signals. However, the re-
sults in Fig. 6a and b are very similar as far as the rate of en-
ergy change is concerned. In both figures, the energy of the
pre-earthquake signals increases at the same rate regarding
the time before the earthquake. This result indicates the ef-
ficiency of the applied method since it can reveal precursory
phenomena in data concerning the day orbits, although the
energy changes are very weak.

Figure 7a represents the average energy of the pre-
earthquake signals recorded by the satellite during night-
passing, for 100 days before the main earthquake as well
as for the aftershock signals for 50 days. As we can see,
there was a significant increase in the mean energy recorded a
month before the main earthquake which remains at the same
levels approximately for 25 days after, while consecutively
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decreasing gradually. In Fig. 7b the overall picture of the en-
ergy change before and after the earthquake is shown. This
figure shows the average energy per 25 days of the observed
signal during the night, for 100 days before and 50 days af-
ter the earthquake. During the 70 days time interval after the
main shock, 5 strong aftershocks of magnitude greater than
5, occurred in the broad seismogenic area of Haiti. We ob-
serve that the drop in the signal’s mean energy during the first
25 days after the earthquake is insignificant. On the contrary,
during the period of 25–50 days after the earthquake there is
a significant reduction of 43% compared with the maximum
value. One possible explanation for this reduction of mean
energy after the earthquake is a respective decrease in seis-
mic activity in the region of Haiti after the main earthquake.

3 Conclusions

In this study we have focussed on changes in the energy of
electromagnetic ULF waves (0–20 Hz) of the electric field
component Ez that were recorded by the satellite DEME-
TER, concerning a time period of 100 days before and 50
days after a strong earthquake which took place in Haiti in
12 January 2010. The analysis was based on a novel method
consisted of two stages: first, the signals were filtered keep-
ing only the very low frequencies, and consecutively their
trend was eliminated by applying the techniques of Singular
Spectrum Analysis combined with a third-degree polynomial
filter. The results reveal a significant increase of the energy
of ULF waves, up to 360%, for a period of one month before
the strong earthquake compared to the energy of the back-
ground. Also, a gradual reduction of wave energy occurs
one month after the main earthquake. Additionally, the com-
parison of pre-seismic day-passing and night-passing signals
showed differences in the mean energy values, but similar
results as far as the rate of energy change is concerned.

The results of this paper clearly indicate that ULF electro-
magnetic waves can be very useful in revealing possible pre-
cursor seismic phenomena in the Earth’s Ionosphere. How-
ever, there is a possibility that similar results could be ob-
tained due to a seasonal effect or other physical phenomena
not related to seismogenesis. For example, Haiti is very close
to the equator where equatorial electrojet can give a strong
effect and ionospheric equatorial disturbances can also be
very strong. Thus, the same analysis will be performed for
the same days in which earthquakes occurred, but for a dif-
ferent year in order to exclude the possibility of seasonal or
other physical effects. Finally, other strong earthquakes that
occurred in low geographic latitudes will be studied using
ULF waveforms in order to further establish the hypothesis
of ULF seismo-electromagnetic precursory emission.

Appendix A

Singular Spectrum Analysis

In this appendix we give some practical details for the imple-
mentation of the methology presented in this paper. Singu-
lar Spectrum Analysis (SSA) has been proven to be a strong
and effective method for modern time series analysis. It was
used by Broomhead and King (1986) for the first time and
originates from the generalized theory of information. Sin-
gular spectrum analysis is applied to the trajectory matrix
constructed by an experimental time series as follows:

X =


x(t1),(t1+τ),...x(t1+(n−1)τ )

x(t2),x(t2+τ),...x(t2+(n−1)τ )

......

x(tN ),x(tN +τ),...x(tN +(n−1)τ )

 =


xT

1
xT

2
.

xT
N

 (A1)

wherex(ti) is the observed time series andτ is the delay
time for the phase space reconstruction. The rows of the tra-
jectory matrix constitute the state vectorsxT

i on the recon-
structed trajectory in the embedding spaceRn. As we have
constructedN state vectors in embedding spaceRn the prob-
lem is how to use them in order to find a set of linearly inde-
pendent vectors inRn which can describe efficiently the at-
tracting manifold within the phase space. These vectors con-
stitute part of a complete orthonormal basis{ei , i=1,2,..n} in
Rn and can be constructed as a linear combination of vectors
on the reconstructed trajectory inRn by using the relation

sT
i X = σic

T
i (A2)

According to the Singular Value Decomposition (SVD) the-
orem it can be proved that the vectorssi andci are eigenvec-
tors of the structure matrixXXT and the covariance matrix
XT X of the trajectory according to the relations

XXT si = σ 2
i si, XT Xci = σ 2

i ci (A3)

The vectorssi,ci are the singular vectors ofX andσ i are
its singular values, while the SVD analysis ofX can be writ-
ten as

X = S6 CT (A4)

whereS= [s1,s2, . . . sn], C= [c1,c2, . . . cn] and6 = diag[σ 1,
σ 2,. . .σ n]. The orderingσ 1≥ σ 2≥. . .≥ σ n≥ 0 is assumed.
Moreover according to the SVD theorem the non-zero eigen-
values of the structure matrix are equal to non-zero eigenval-
ues of the covariance matrix. This means that ifn′ (where
n′ ≤ n) is the number of the nonzero eigenvalues, then rank
XXT =rankXT X=n′. It is obvious that then′–dimensional
subspace ofRN spanned by{si,i=1,2,. . . n′} is mirrored to
the basis vectorci which can be found as the linear combi-
nation of the delay vectors by using the eigenvectorssi ac-
cording to Eq. (A2). The complementary subspace spanned
by the set{si, i=n ′+1,. . . N} is mirrored to the origin of the
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embedding spaceRn according to the same relation. That
is, according to SVD analysis the number of the independent
eigenvectorsci that are efficient for the description of the un-
derlying dynamics is equal to the numbern′ of the non-zero
eigenvaluesσ i of the trajectory matrix. The trajectory can be
described in the new basis{ci , i=1,2,. . . n} by the trajectory
matrix projected on the basis{ci} given by the productXC
of the old trajectory matrix and the matrixC of the eigenvec-
tors {ci}. The new trajectory matrixXC is described by the
relation

(XC)T (XC) = 6 2 (A5)

and its columns are called principal components. This rela-
tion corresponds to the diagonalization of the new covari-
ance matrix so that in the basis{ci} the principal compo-
nents of the trajectory are uncorrelated. Also, from the same
relation Eq. (A5) we conclude that each eigenvalueσ 2

i is
the mean square projection of the trajectory on the corre-
spondingci, so that the spectrum{σ 2

i } includes information
about the extending of the trajectory in the directionsci as
it evolves in the reconstructed phase space. The explored by
the trajectory phase space corresponds to the average to ann-
dimensional ellipsoid for which{ci} give the directions and
{σ i} the lengths of its principal axes. The replacement of the
old trajectory matrixX with the newXC works as a linear
filter for the entire trajectory. Moreover the SVD analysis
permits to reconstruct (Elsner and Tsonis, 1996) the original
trajectory matrix by using theXC matrix as follows

X =

n∑
i=1

(Xci)c
T
i (A6)

The part of the trajectory matrix which contains all the in-
formation about the deterministic trajectory, as it can be ex-
tracted by observations, corresponds to the reduced matrix

Xd =

n′∑
i=1

(Xci)c
T
i (A7)

which is obtained by summing only for the eigenvectorsci

with non-zero eigenvalues.
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