

International Institute FOR Multifunctional Materials FOR Energy Conversion

AEROSPACE ENGINEERING

Multifunctional Composites

Theocharis Baxevanis

2012 SUMMER SCHOOL IN ADVANCED COMPOSITE MATERIALS

2-6 July

Texas A&M University

Aerospace Engineering

Administration Building

IIMEC

What is the IIMEC

The International Institute for Multifunctional Materials for Energy Conversion (IIMEC) is an NSF-funded International Material Institute

- What is our Mission as a research group? The mission of IIMEC is to establish a communications, knowledge-base and computational/laboratory grid that will advance research in multifunctional materials for efficient energy conversion
- Specific research theme areas:

- Coupling of thermal/magnetic and mechanical properties

- Coupling of electrical and mechanical properties

- Thermal and electrical, and optical and electrical coupling

Participating Universities in US and worldwide

Research in our Group

Characterization, model development, and analysis of

What are Multifunctional Composites?

- Multifunctional Composites are structural materials with added functionality, e.g., energy absorption, electromagnetic properties, sensing and actuation, power harvesting and repair.
- Development of Multifunctional Composites involves the integration of active and passive material systems, often including the coupling of relevant mechanical, electrical, magnetic, thermal, optical, or other physical properties
- Active materials include piezoelectrics, electrostrictives, magnetostrictives, electroactive polymers (EAPs), shape memory alloys (SMAs), shape memory polymers (SMPs) and magnetic shape memory alloys (MSMAs)

Active Materials

Active materials are able to modify their functional characteristics if stimulated with electrical or magnetic fields, temperature, light, etc...

Main advantages with respect to traditional components:

- Act simultaneously as actuators and sensors •
- Perform controlled mechanical action •
- Are adaptive with environmental conditions •
- High level of miniaturization

Types of Coupling in Active Materials

Piezoelectrical Polymers and Ceramics: **Electromechanical coupling**

Magnetic shape memory alloys: Magnetomechanical coupling

Shape memory alloys: Thermomechanical coupling

CNT-based devices: **Electrothermal coupling**

Mechanical Response of Active Materials

actuation energy density

actuation frequency

Active Materials Market Share

Shape Memory Alloys (SMAs)

- Shape Memory Alloys (SMAs) are active materials, capable of converting thermal to mechanical work and *vice versa*
- SMAs are desirable in a wide range of actuator, energy absorption and vibration damping applications

Bomedical devices Burpee Materials Technology, LLP

Advantages:
High Strength
High Strain
High Actuation Energy

Disadvantages:Low FrequencyLow Efficiency

Variable Geometry Chevrons

Phase Transformation

Diffusionless, shear driven transformation from austenite to martensite and vice-versa

The relation between the cubic *B*2 cell (shaded box) and the undistorted (tetragonal) *B*19 cell

Face-diagonal planes. Martensite variants

Phase Transformation (cont.)

Thermally-Induced martensite

Mechanical Response of SMAs

shape memory effect

 SMAs can recover their shape when the temperature is increased even under high applied loads (*Shape Memory Effect*)

Pseudoelastic effect

Mechanical Response of SMAs

pseudoelastic behavior

• Transformation can also be induced by applying a sufficiently high mechanical load to the material in the austenitic phase (*Pseudoelastic Effect*)

Shape memory effect

Applications

open

Voggenreiter (EADS) 2001

Otsuka (NIMS) 2002

move

connect

F-14 Raychem 1971

SMA Devices

http://www.cs.ualberta.ca/~database/MEMS/sma_mems/muscle.html

http://www.toki.co.jp/MicroRobot/_8LegRobot.html

An Application...

- Common problem for many aerospace applications:
 - Lack of materials capable of handling extreme environments
 - High Temperature Regimes
- Past solution was metal-ceramic composites
 - Brittleness of ceramics often lead to failure

http://en.wikipedia.org/wiki/ National_Aerospace_Plane

http://en.wikipedia.org/wiki/ File:Stsheat.jpg

New FG Hybrid Composite

- New Solution: New Functionally Graded Hybrid Composite
- Top: Oxide Ceramic Thermal Barrier Coating
- Middle: Graded Ceramic-Metal Composite
- Bottom: Actively Cooled Polymer Matrix Composite

Problem: How to improve mechanical behavior of GCMeC

Ceramic Stress State

Shape Memory Polymers

- SMPs present a relatively low-force, high-elongation alternative compared to shape memory alloys (SMAs)
 - Reported strains up to 800% (Liu et al. 2007)
 - Ability to significantly tune material properties
- Potential applications
 - Aerospace devices
 - Biomedical devices

Lendlein and Langer (Science 2002)

Thrombectomy Devices ¹

Cardiovascular Stents²

Deployable Space Structures ³

¹Buckley, P.R., et al., *IEEE Transactions on Biomedical Engineering, 2006.* ²Courtesty of Landon Nash ³Lake, M.S., et al., *Proceedings of SPIE,* 1999.

Thermomechanical Cycle

Shape memory effect (SME) thermomechanical cycle:

- 1. Load in rubbery phase $(T>T_g)$
- 2. Cool at fixed deformation
- 3. Unload in glassy phase (T<Tg)
- 4a. Free recovery (heat at zero stress)
- 4b. Constrained recovery (heat at constant displacement)

Loading at High Temperature (T>T_{trans})

- Large deformations possible
 - Polyurethane SMPs stretched to 100% strain (Baer et al., 2006; Tobushi et al. 1997)
 - Polystyrene-based SMPs stretched to 75% (Atli et al. 2009) and 100% strain (Volk et al. 2010)
- Deformation mechanism (stretching chains + netpoints) similar to that of stretching vulcanized rubber

(http://www.ncbi.nlm.nih.gov)

(http://www.worsleyschool.net)

Cooling to T<T_{trans} and Unloading

 'Freeze' the deformation of the material by cooling while maintaining a constraint (e.g., constant strain)

Type of Switching ('Soft') Segment	`Freezing' Mechanism	
Semi-crystalline (T _{trans} =T _m)	Formation of crystalline regions prevents long range motion of amorphous molecules Rangaraja	n et al. (Macromolecules 1998)
Amorphous (T _{trans} =T _g)	Transformation from rubber phase to glass phase. Lack of thermal energy results decreases long range motion of molecules.	Volume Glassy Temperature (http://www.eipau.media.pl/)

Recovery at High Temperature (T>T_{trans})

- Heating at zero load to observe shape recovery
 - Stretched polymer chains inherently want to return to their randomly oriented, coiled configurations (entropic gain)

Lendlein and Kelch (Angew Chem. Int. Ed. 2002)

Thermodynamically consistent:

$$\Delta G = \Delta H - T \Delta S$$

Swalin (Thermodynamics of Solids, 1972)

SMP Cardiovascular Tube

SMP Thrombectomy Device

Magnetic Shape Memory Alloys

Magnetic Shape Memory Effect

Magnetic Domain Structure

Martensitic Phase Transformation in MSMAs

4 possible magnetic domains in tetragonal martensite

Large magnetic field-induced strains in MSMA single crystals

Applications of MSMAs

Design of High Frequency MSMA Actuators

- High mobility of twin boundaries that separate martensitic variants
- High Frequency Actuation

Potential application: Replacement of Motor, Gears and Belts in Sewing Machine with Magnetically Actuated MSMA Needle

Commercially available MSMA Actuators: (source: http://www.adaptamat.com)

Ferroelectric Materials

 Ferroelectic materials are defined as those which exhibit, at temperatures below the Curie point, a domain structure and spontaneous polarization which can be oriented by applied electric fields (BaTiO₃, Pb(Zr, Ti)O₃, Pb(Mg, Nb)O₃)

Advantages:

Very High Actuation Frequency

Direct Electric-Strain Coupling

Disadvantages:

Piezomotor

Piezoelectric actuator

Direct and Converse Piezoelectric Effects

- The converse piezoelectric effect constitutes of linear reversible strains generated in ferroelectric materials in response to an applied electrical field
- The direct piezoelectric effect designates the opposite phenomenon in which low stress inputs produce changes in the dipole configuration or polarization

Ferroelectric and Ferroelastic switching

Spontaneous polarization

Ferroelectric 180° polarization switch

Ferroelastic 90° switch due to compressive stress greater than the coercive stress ($\sigma > \sigma_c$)

Six possible switching mechanisms

Shape Memory Effect

Constitutive Equations for Linear Piezoelectricity

$$\varepsilon_{ij} = s_{ijkl}^E \sigma_{kl} + d_{nij} E_n$$
$$P_n = d_{nij} \sigma_{ij} + \epsilon_{nm}^T E_m$$

- $\sigma_{ij}\,$ components of the stress tensor
- $arepsilon_{ij}$ components of the strain tensor
- P_i components of the electric displacement vector
- E_i components of the electric field vector

$$s^E_{ijk}$$

l components of the elastic compliance tensor

 d_{nij} piezoelectric strain coefficients

Extensional Piezoelectric Device

Composite actuator consisting of an elastic substrate and two piezoelectric layers

Electrical connections for a piezoelectric extender actuation. A voltage is applied to the piezoelectric layers aligned with the poling direction of both piezoelectric layers

Extensional Piezoelectric Device (cont.)

The deflection u_1 of a piezoelectric extender of total length L can be expressed as

$$u_1 = \varepsilon_{11}L$$

and the electric field is equal to the applied voltage divided by the piezoelectric layer thickness

$$E_3 = \frac{2v}{t_p}$$

Constitutive relationships for the three layers

$$\varepsilon_{11} = \begin{cases} \frac{1}{Y_1^p} \sigma_{11} + d_{13} E_3, & \frac{t_s}{2} \le z \le \frac{1}{2} (t_s + t_p) \\ \frac{1}{Y_s} \sigma_{11}, & -\frac{t_s}{2} \le z \le \frac{t_s}{2} \\ \frac{1}{Y_1^p} \sigma_{11} + d_{13} E_3, & \frac{1}{2} (t_s + t_p) \le z \le -\frac{t_s}{2} \end{cases}$$

Extensional Piezoelectric Device (cont.)

Integrating over the y and z directions for the respective domains gives

$$\frac{w_p t_p}{2} Y_1^p \varepsilon_{11} = \int_{y,z} \sigma_{11} dy dz + \frac{w_p t_p}{2} Y_1^p d_{13} E_3$$
$$w_p t_s Y_s \varepsilon_{11} = \int_{y,z} \sigma_{11} dy dz$$
$$\frac{w_p t_p}{2} Y_1^p \varepsilon_{11} = \int_{y,z} \sigma_{11} dy dz + \frac{w_p t_p}{2} Y_1^p d_{13} E_3$$

Assuming that the strain in all three regions is the same, by adding one obtains

$$(w_p t_p Y_1^p + w_p t_s Y_s)\varepsilon_{11} = \int_{y,z} \sigma_{11} dy dz + w_p t_p Y_1^p d_{13} E_3$$

Extensional Piezoelectric Device (cont.)

Applications of Ferroelectrics

- Medical Ultrasound Imaging
- Transducers
- Hydrophones
- Micro pumps
- Vibration control
- Actuators

High temperature piezoelectric composites. An Vib active damping concept

A piezoelectric sensor detects the vibrations of the wheel, leading to an assessment of its wear status

Significant noise reduction can be achieved with the use of piezoelectric patches

Ferromagnetic Materials

 At temperatures below the Curie point, ferromagnetic materials exhibit a domain structure and spontaneous magnetization which can be oriented by applied magnetic fields (Fe, Ni, Co)

Advantages:

Moderate Strains
 Moderate Force
 High frequency

Ferromagnetic sensor

http://research.microsoft.com/ en-us/projects/ferromag/

Source: ETH, Zurich

Miniature ferromagnetic prototype devices can be made to move within fluids by applying an external magnetic field

Polymer Nanocomposites

Polymer nanocomposites consist of a polymeric material (e.g., thermoplastics, thermosets, or elastomers) with reinforcement of nano-particles

Most commonly used nano-particles include:

- Carbon nanofibers (CNFs)
- Carbon nanotubes [multiwall (MWNTs), small-diameter (SDNTs), and single-wall (SWNTs)]
- Nanosilica (N-silica)
- Nanoaluminum oxide (Al2O3)
- Others

Thermosets and thermoplastics used as matrices for making nanocomposites include:

- Nylons
- Polyolefin, e.g. polypropylene
- Polystyrene
- Ethylene-vinyl acetate (EVA) copolymer
- Epoxy resins

CarbonNanoFibers

TEM image of several CNFs

- Due to the remarkable mechanical properties, high thermal stability and electrical properties, CNFs offer opportunities to develop multifunctional materials
- Role of the interphase around the inclusion:
 - Polymer with restricted chain mobility
 - Higher Tg, Stiffness, Strength

Thermal stability of CNFs

An Application of Polymer Nanocomposites

- Lightning strikes cause:
 - resin melting, vaporization, and ply delamination in composites
 - Increase in affected area
 - Compromise structural integrity of aircraft
 - Difficult to repair
 - damage to onboard electronics without EM shielding
- Current LSP system protects composites from complete failure
 - But large damage still present
- Avoiding weather not always an option

- 1. http://abcnews.go.com/Travel/Story?id=3994564&page=1
- 2. http://www.lightningtech.com/d~ta/faq1.html
- 3. http://www.boeing.com/commercial/aeromagazine/aero_1o/loop.pdf

Motivation

Fabrication

Carbon nanotube thin film fabrication

Film Applicator

Thin Film

- Incorporate thin films into composite laminate structure
 - Embody CNT loaded resin thin film on top carbon fiber ply
 - Lay-up rest of carbon fiber and Cu mesh
 - T650-135 carbon fiber plies
 - Astrostrike Cu mesh
 - Autoclave

Thin film incorporated into top ply

Electrical Conductivity

Composite Electrical Conductivity

Electrical Conductivity of Composites

Self-Healing Composites

- Self healing can be described as mechanical, thermal or chemically induced damage that is repaired by materials already contained within the structure
- The release of repair agent from embedded storage reservoirs mimics the bleeding mechanism in biological organisms. Once cured, the healing resin provides crack arrest and recovery of mechanical integrity
- Experiments have shown as much 75% recovery of the original strength

storage reservoirs

Self-Healing Fibre Reinforced Composites via a Bioinspired Vasculature DOI: 10.1002/adfm.201101100 Christopher J. Norris, Gregory J. Meadway, Michael J. O'Sullivan, Ian P. Bond, and Richard S. Trask